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Lubrication theory is employed to examine surface-tension-dominated flows that arise
during the application of thin coatings, using pressurized dies, to axially symmetric
fibres. In all cases, it is assumed that the clearance between the die exit and the fibre
is small compared with the fibre diameter. Previous analyses have been concerned
with flows controlled by axial curvature for which the resulting solutions are unique.
The present investigation examines stationary flows in which both the axial and the
azimuthal curvatures are comparable. It is shown that this situation develops when the
applicator volume flow is sufficiently large. Moreover, as the volume flow is increased,
spatially oscillatory menisci can exist such that the solution is not always unique.
These results are new, and calculations are presented that determine the maximum
die clearance below which the solution remains unique. Within this regime, surface
oscillations do not occur and there is a monotonic decay to the final uniform coating
thickness.

1. Introduction
Surface-tension-dominated flows play an important role in numerous coating

techniques. Typical examples are found in offset printing, fibre spinning, micro-
electronics and physiology. In particular, protective coatings of extreme precision are
required for magnetic tapes, CD-ROM surfaces and optical fibres. Reviews have been
given by de Gennes (1985), Ruschak (1985), Benjamin & Scriven (1991), Myers (1998)
and Quéré (1999). Stability analyses for related free-surface flows have been discussed
by Eggers (1997), and a comprehensive survey of the dynamics of thin liquid films can
be found in Oron, Davis & Bankoff (1997). Current difficulties associated with ultra-
thin coatings, including spinodal dewetting, are described in Weiss (1999). Some of
the examples noted above are associated with plane geometries, but axially symmetric
flows that arise in the coating of thin filaments present additional challenges.

This paper is concerned with flows that develop in the coating of fibres using
pressurized applicators or dies. In this process, a fibre is pulled through a shaped
die at a specified speed, and the geometry and the supply pressure are selected to
produce the required coating thickness. Equivalently, the die generates the necessary
applicator volume flow. After passage through the applicator, the coating is cured to
enhance solidification. Prior to curing, it is important that the coating has reached
its final asymptotic thickness in a monotonic manner. Clearly, curing must take place
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before the growth of any temporal instabilities that are inherent in this type of coating
process (Quéré 1999). All flows considered here are assumed to be time-independent
and axially symmetric.

Landau & Levich (1942) used lubrication theory to analyse planar free surface
shapes for surface-tension controlled flows at small capillary numbers Ca. Their
analysis is also relevant to certain non-planar applications including the behaviour of
thin annular films in long tubes, some aspects of fibre coating, etc. (Bretherton 1961;
Middleman 1995; Jensen 1997). In these flows, axial curvature dominates and the
results are valid in the limit when the dimensionless volume flow Q = δ = O(Ca2/3),
where δ is the ratio of the final coating thickness to the fibre radius. At larger volume
flows, both curvature terms become important, and the Landau–Levich approach is
no longer valid. Specifically, this occurs when Q = δ =O(Ca1/3), and the related flow
structure is outlined in the present paper. It is shown that the free-surface shape
is now controlled by a modified capillary number λ=3Caδ−3. The Landau–Levich
equation can be recovered in the limit λ → ∞.

Related analyses for unsteady flows have been given by Hammond (1983), Frenkel
(1992) and Kalliadasis & Chang (1994). In each case, they developed suitable nonlinear
evolution equations for axially symmetric disturbances. Frenkel used such an equation
to discuss film break-up on vertical cylinders, and observed that the theory was
consistent with existing experimental data (Quéré 1990; see also de Ryck & Quéré
1996). An equivalent equation was considered by Kalliadasis & Chang who examined
the propagation of solitary waves on thin films of unbounded extent in the axial
direction. Unsteady thin-film flows are also discussed in the review papers by Oron
et al. and Myers. By choosing appropriate frames of reference, subject to suitable
asymptotic limits, it can be shown that these wave equations reduce to the nonlinear
steady form analysed in the present paper. An earlier formulation of the steady
equation was noted in Blythe & Simpkins (1995). More recently, the equation was
also derived in an analysis of dip-coating processes (Darhuber et al. 2000).

In contrast with the Kalliadasis–Chang approach, the current analysis is concerned
with stationary solutions for a semi-infinite fibre when the meniscus is pinned at
the exit of a coating applicator. Calculations indicate that, if the die clearance
(or equivalently the volume flow) is sufficiently large, a steady spatial oscillation
develops on the free surface. The solutions are analogous to those obtained for the
Laplace–Young equation in analyses of pendant drops (see Finn 1986). Because the
governing differential equation is translationally invariant in the axial direction, it
follows that above a certain (critical) die clearance the meniscus profile is not always
uniquely defined when the free surface is oscillatory. Determination of the critical die
clearance, as a function of the controlling parameter λ, is important in die design.
These steady semi-infinite problems do not appear to have been considered previously,
and this paper provides a mathematical description of low-capillary-number flows that
contain spatial oscillations. Physically, the existence of these flows is controlled by
their stability. Detailed stability considerations are beyond the scope of the present
study, but elementary arguments suggest, and practical experience demonstrates, that
curing processes restrict the growth of certain spatio-temporal oscillations.

Appropriate dimensionless forms of the governing equations, based on the
lubrication limit, are set out in § 2. In § 3 the basic solution for the velocity distribution
in the free surface region is determined. A review of the small-gap Landau–Levich
theory, with Q =O(Ca2/3), is given in § 4. Extension to larger gaps, with Q =O(Ca1/3),
is outlined in § 5. Non-unique solutions are discussed in § 6, as is the evaluation of the
critical gap size. Verification of the computational results for the critical gap is carried
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Figure 1. Geometry and coordinate system in dimensional units.

out by considering an intermediate asymptotic analysis with λ� 1 or, equivalently,
with Ca1/3 � Q � Ca2/3. Comparisons with the numerical calculations are made in
§ 7; excellent agreement is found. Application of the approach to a cylindrical die
is described in § 8, together with calculations of the volume flow–pressure gradient
relationship (Middleman 1998). Stability issues and the associated time scales are
briefly examined in § 9.

2. Governing equations
In the die-coating process considered here, an incompressible Newtonian fluid with

constant properties is withdrawn from an axisymmetric applicator bath of depth L′

by a fibre of radius R′
f moving vertically downwards at a speed W ′. The basic free-

surface flow is shown in figure 1. No detailed assumptions about the applicator shape
are made in the general analysis given below. For thin coatings, suitable dimensionless
radial and axial coordinates are defined by

r ′ = R′
f (1 + δs), z′ = R′

f z, (2.1)

with s =0 on the fibre surface; here δ � 1 is the dimensionless asymptotic coating
thickness. On the free surface

r ′ = R′
f (1 + δh) or s = h(z), (2.2)
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so that, from the definition of δ,

h → 1 as z → ∞. (2.3)

Corresponding dimensionless velocity components in the radial and axial directions,
respectively, are

(u′, w′) = W ′(δu, w), (2.4)

and conditions at the fibre surface require that

(u, w) = (0, 1) on s = 0. (2.5)

In addition, the kinematic condition at the free surface demands that

u = w
dh

dz
on s = h. (2.6)

This paper is concerned with surface-tension-dominated flows in which both axial
and azimuthal curvature effects are important. It is assumed throughout that the
capillary number

Ca =
µW ′

σ
� 1, (2.7)

where µ is the viscosity and σ is the surface tension. Pressures are measured relative to
the ambient external value including the constant contribution from the unperturbed
azimuthal curvature R′−1

f . An appropriate dimensionless pressure difference p is then
defined by

�p′ = δ
σ

R′
f

p. (2.8)

From the usual normal stress balance at the free surface (see e.g. Batchelor 1967), it
follows that

p = −h − d2h

dz2
on s = h, (2.9)

where terms O(δ, δ−1Ca), have been neglected. For the basic limit discussed in this
paper, see (2.11) below, Ca =O(δ3) and the dominant error in (2.9) is O(δ). In (2.9),
−h and −d2h/dz2 represent the local approximations to the principal curvatures, see
Hammond (1983). (Only d2h/dz2 occurs in the planar case.) Neglecting terms O(δ2),
the tangential stress balance at the free surface gives

∂w

∂s
= 0 on s = h. (2.10)

For the thin-film limit δ � 1 with δRe = o(1), where the Reynolds number Re is
based on the asymptotic coating thickness, the axial momentum equation implies that
there is a balance between the pressure gradient and the viscous terms for Ca = O(δ3).
In this case the inertial terms, of relative size δRe, can be neglected. With

λ = 3
Ca

δ3
= O(1), (2.11)

where the factor 3 has been inserted for later algebraic convenience, the leading
approximation to the Navier–Stokes equations is the conventional lubrication limit
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(see e.g. Middleman 1995),

∂u

∂s
+

∂w

∂z
= 0, (2.12)

−3λ−1 ∂p

∂z
+

∂2w

∂s2
= 0, (2.13)

∂p

∂s
= 0. (2.14)

Here, terms O(δRe, δ) and smaller have been neglected In (2.13), the body-force
contribution has also been ignored; this factor is usually extremely small in fibre-
coating applications.

3. Free-surface evolution
From (2.5), (2.9), (2.10), (2.13) and (2.14) it follows that

w = 1 − K(z)
[
h(z)s − 1

2
s2

]
, (3.1)

with

K(z) =
3

λ

dp

dz
= −3

λ

(
dh

dz
+

d3h

dz3

)
. (3.2)

For stationary flows the dimensionless volume flux Q is constant, and from (3.1) is
given by

Q = δ

∫ h

0

w ds = δ
(
h − 1

3
Kh3

)
. (3.3)

As z → ∞, h → 1 and K → 0, so that from (3.3)

Q = δ. (3.4)

An alternative expression for Q can be deduced from the applicator flow field, which
depends on the geometry and on the applied pressure gradient. This relationship is
given in § 8 for a simple cylindrical applicator. The result enables δ to be found for a
given exit gap and pressure gradient. It should be emphasized that no specific choice
for the applicator geometry is required in the general analysis presented below. From
(3.2)–(3.4), the free-surface shape is governed by

h3

(
d3h

dz3
+

dh

dz

)
= −λ(h − 1), (3.5)

which must be solved subject to (2.3) and an initial condition

h = hi at z = 0. (3.6)

The steady equation (3.5) was derived in Blythe & Simpkins (1995), and an application
to dip-coating phenomena can be found in Darhuber et al. (2000). Experimental
results given in Darhuber et al. confirm the scaling law defined by (2.11) and (3.5).

4. The Landau–Levich limit
For large modified capillary numbers, i.e. λ� 1, the seminal Landau & Levich

description can be recovered in the limit δ =Q =O(Ca2/3). An appropriate
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independent variable is

y = zλ1/3 or z = yδ1/2

(
3Ca

δ3/2

)−1/3

. (4.1)

Consequently, for δ = O(Ca2/3), z = O(δ1/2). In this limit, axial curvature dominates
with δd2h/dz2 = O(1), and u = O(δ−1/2). It follows from (3.5) that

h3 d3h

dy3
= 1 − h, (4.2)

see Bretherton (1961). This result can also be deduced more generally for δ = o(Ca1/3)
by writing

δ = �(3Ca)1/3, z =�y, � = o(1). (4.3)

Properties of (4.2) and related equations are discussed in Tuck & Schwartz (1990).
For the choice hi = 2, the numerical solution of (4.2), using (2.9), yields

pe = (p)z=0 = − 1

δ

(
3Ca

δ3/2

)2/3(
d2h

dy2

)
y=0

= − λ2/3

(
d2h

dy2

)
y=0

with

(
d2h

dy2

)
y=0

≈ 0.4229

(4.4)

as the dominant approximation to the applicator exit pressure. This initial gap
corresponds to the unpressurized applicator considered in § 8 (see Batchelor 1967;
Middleman 1998). A comparison with results for the full equation (3.5) is discussed
in § 5.

5. Larger gaps
For thin films, the distinguished limit defined by (3.5) with λ= O(1) occurs when

δ =Q =O(Ca1/3). Although these flows arise for significantly larger exit gaps than
those discussed in § 4, where δ = O(�Ca1/3), the die clearance is still small compared
with the fibre radius. For λ=O(1), h is again required to satisfy the initial and
asymptotic conditions listed in (3.6) and (2.3). As shown in Appendix A, satisfaction
of (2.3) imposes two constraints on (3.5) and implies that the asymptotic decay
(z → ∞) towards h = 1 is monotonic. Numerical solutions of (3.5), subject to (3.6)
and (2.3), can be found using the technique described in Appendix B. Solution profiles
with hi = 2 are shown in figure 2 for various λ.

It was observed in § 4 that the Landau–Levich equation (4.2) can be obtained from
(3.5) in the limit λ → ∞ at fixed hi . A comparison between (4.2) and (3.5) is made in
figure 2 for the particular case λ= 5. Note that the z and y scales are related by (4.1).
Even at this modest value of λ, the solutions are in good agreement.

The corresponding limiting solution as λ → 0, with hi fixed, is also easily obtained.
Inspection of (3.5) suggests the scaling

z = λ−1ξ with h = N0(ξ ) + λ2N1(ξ ) + . . . . (5.1)

Hence,

dN0

dξ
= −N0 − 1

N3
0

, (5.2)

so that

ξ = g(hi) − g(N0), (5.3)
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Figure 2. Free-surface profiles for hi =2.0: unique solutions. Also shown are �, the
Landau–Levich result for λ= 5.0, and �, the small λ result (5.3) for λ= 0.5.

where

g(h) = 1
3
(h − 1)3 + 3

2
(h − 1)2 + 3(h − 1) + ln(h − 1). (5.4)

The result (5.4) defines a universal profile in which the endpoint, see (5.3), is defined
by the choice of hi . This solution, for which the z and ξ scales are connected by (5.1),
is also displayed in figure 2 for the particular case λ = 0.5. Even at this value of λ,
the agreement with the full equation (3.5) is remarkably good.

For each of the cases shown in figure 2, the coating thickness decays monotonically
to its asymptotic value (h = 1) as z → ∞. At larger values of hi , this monotonic
behaviour does not persist for all λ. As noted in Appendix B, by introducing

z̄ = z0 − z (5.5)

the results, for a given λ, can be obtained for various hi by backward integration of
(3.5) starting from the asymptotic state

h = 1 + h̄b at z̄ = 0 with 0 < h̄b � 1. (5.6)

The spatial location z = 0 is identified by the point (z̄ = z0) at which hi attains the
required value. Typical results for λ = 1.5, 2.0 and 2.5, using the same starting value
for h̄b, are displayed in figure 3. With an initial gap hi = 2.75, the solutions remain
monotonic for λ = 1.5 and 2.5, although the sign of the curvature changes. When
λ= 2.0, there is an oscillation in the coating thickness prior to attaining hi = 2.75.

All solutions shown in figure 3 for hi = 2.75 are unique. Continuation of the
integration at λ = 2, however, yields the result shown in figure 3. From this figure,
it is apparent that there is only one z̄-location at which h = 2.75, although this is
obviously not true for all choices of hi . In particular, when hi = 3.5 there are three
such locations and the solution is therefore not unique. (Because (3.5) is invariant
under translation in z, each of these locations can serve as the initial station at which
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Figure 3. Free-surface profiles: monotonic and oscillatory solutions, unique
and non-unique examples.

h =hi = 3.5.) When hi is less than the first local minimum, it is apparent that the
solution is always unique (see e.g. hi = 2 in figure 3).

6. Non-unique solutions
By again introducing the translation z̄ = z0 − z, it is established in Appendix C that

as z̄ → ∞
h ∼ z̄1/3(a + b cos(z̄ − φ)) + . . . , (6.1)

where

a2 − b2 = (3λ)2/3. (6.2)

Since (6.1) implies that h � 1, the theory is valid only if δh � 1 or equivalently from
(2.11), Ca1/3h � 1. As suggested by (6.1), the values of h at successive maxima (hmax i)
increase, as do the values at successive minima (hmin i), see figure 3. For profiles of
this type, including at least one local maximum, multiple solutions will arise for all
hi satisfying

hmin 1 < hi < hmax 1. (6.3)

If, however,

hi < hmin 1 ≡ hcrit(λ) (6.4)
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Figure 4. Critical thickness for coating flows at small Ca; inset gives an enlarged
view for λ< 1.

the solution will remain unique. As observed in § 5, the solution displayed in figure 3
for λ=2.0 is unique when hi =2.50 and when hi = 2.75, but it is not unique at
hi = 2.61. Note that further bands of unique solutions can arise if hmin 2 > hmax 1, etc.;
a detailed discussion of these regimes is not given in this paper.

The function hcrit(λ), defined by (6.4), is shown in figure 4. It can be seen that the
solution is always unique when hi < (hcrit)min ≈ 2.43 for which the corresponding
λ ≈ 1.64. When λ > 1.64 . . . , the numerical calculations indicate that hcrit increases
monotonically. Asymptotic results for λ� 1 are discussed in § 7. As λ decreases,
it appears from figure 4 that transitions in hcrit occur at discrete values of λ. An
enlarged view of this region is given in the inset to figure 4. These transitions are
associated with the merging of the first maximum hmax 1 and the first minimum hmin 1.
A consequence of this collapse is that the first maximum is then equivalent to hmax 2.
This turning point occurs at an increment in z of one wavelength (approximately 2π),
and gives rise to a larger hcrit ≡ hmin 2.

7. Solutions for large λ
The numerical results in figure 4 suggest that, for large λ, hcrit increases

monotonically towards an upper bound that is independent of λ. Physically, for
a fixed Ca, the limit λ→ ∞ corresponds to very thin coatings. Note that this limit
leads to the classical Landau–Levich solution (§ 4) only when hi < hcrit. If hi > hcrit,
the asymptotic behaviour for λ� 1 requires the matching of solutions that are valid
near successive maxima and minima (see figure 3). Determination of this limiting
behaviour, together with the structure of the non-unique solution, is described below.
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From Appendix A, the eigenvalue for the asymptotic decay h − 1 ∼ ke−mz satisfies

m3 + m = λ, (7.1)

(see (3.5) and (A 2)). Consequently, for λ � 1,

m = λ1/3 − 1
3
λ−1/3 . . . , (7.2)

which suggests introducing

z0 − z = λ−1/3ζ (7.3)

as a new independent variable. Using z0(λ, hi) as an effective origin for ζ is consistent
with the approach discussed in Appendix B. For h = O(1), a suitable local expansion
is

h = h0(ζ ) + λ−2/3h1(ζ ) + . . . . (7.4)

It follows from (3.5), (7.3) and (7.4) that

h3
0

d3h0

dζ 3
= h0 − 1, (7.5)

which is equivalent to the Landau–Levich equation, (4.2). Again, it is required that

h0 − 1 ∼ keζ (7.6)

as ζ → −∞. As noted in Appendix B, the adoption of a starting value such that
h0(0) − 1 � 1 (see (7.3)) enables the numerical solution of (7.5) to be obtained. For
ζ → ∞ (z < z0, λ� 1) the asymptotic growth corresponding to (7.5) is

h0 ∼ a2ζ
2 + a1ζ + a0 + O(ζ −1), (7.7)

where ai(z0) can be found numerically. Note that a2 is independent of z0.
Similarly, the first-order term in (7.4) satisfies

h3
0

d3h1

dζ 3
+

(
2 − 3h−1

0

)
h1 = −h3

0

dh0

dζ
, (7.8)

for which the decaying solution is required as ζ → − ∞. In this limit,

h1 ∼ −k

3
ζeζ (7.9)

and, strictly, the expansion (7.4) is not uniformly valid. A correction, which can easily
be obtained, is required in the region ζ = O(λ2/3) where

h − 1 ∼ k exp
(
− 1

3
λ−2/3ζ

)
exp ζ. (7.10)

Of more interest is the behaviour of h1 as ζ → ∞. From (7.8) and (7.7), it can be
established that

h1 ∼ − 1
12

a2ζ
4 − 1

6
a1ζ

3 + a12ζ
2 + . . . , (7.11)

where a12(z0) can be found from the numerical solution of (7.8). Inspection of (7.7)
and (7.11) indicates that the expansion fails when

ζ = O
(
λ1/3

)
or z0 − z = η = O(1). (7.12)

In this region, which includes the first turning point hmax1 (see figure 3), h = O(λ2/3).
Setting

h = λ2/3H (η; λ) (7.13)
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leads to the matching condition

H ∼ a2

(
η2 − 1

12
η4 + . . .

)
+ λ−1/3a1

(
η − 1

6
η3 . . .

)
+ λ−2/3

(
a0 + a12η

2 + . . .
)
+ . . . (7.14)

as η → 0.
From (3.5), (7.12) and (7.13), it can be seen that H (η; λ) satisfies

H 3

(
d3H

dη3
+

dH

dη

)
= λ−1

(
H − λ−2/3

)
(7.15)

and, from (7.14), a suitable local expansion has the form

H = H0(η) + λ−1/3H1(η) + λ−2/3H2(η) + . . . . (7.16)

Clearly,

H ′′′
i + H ′

i = 0 (i = 0, 1, 2). (7.17)

After matching with (7.14), the solutions can be written

H0 = 2a2(1 − cos η), (7.18a)

H1 = a1 sin η, (7.18b)

H2 = a0 + 2a12(1 − cos η). (7.18c)

This expansion obviously fails as η → 2π, where a suitable local independent variable
is

η = 2π + λ−1/3ζ̂ , (7.19)

with

h = ĥ(ζ̂ ; λ). (7.20)

The structure defined by (7.19) and (7.20) is associated with a region that includes the
minimum hmin 1 (see figure 3). An immediate similarity with (7.3) and (7.4) is apparent.
At leading order in this region, (3.5) also reduces to the Landau–Levich equation

ĥ3 d3ĥ

dζ̂ 3
= ĥ − 1, (7.21)

but now, in contrast with the asymptotic decay (7.6),

ĥ ∼ a2ζ̂
2 + a1ζ̂ + a0 + . . . as ζ̂ → − ∞. (7.22)

The solution of (7.21), subject to (7.22), passes through the local minimum hmin 1. As
ζ̂ → + ∞, however, the asymptotic growth is still of the form (7.7) with ai replaced
by âi . Clearly, a periodic structure of the form (7.18) again emerges. This pattern,
governed by (7.21), repeats with the coefficients in the algebraic growth laws being
dependent on the particular cycle.

As defined in (6.4), hcrit corresponds to the first local minimum hmin 1. To leading
order, the location and magnitude of this minimum are governed by (7.21) and (7.22).
In general,

ĥ(ζ̂ ; λ) = ĥ0(ζ̂ ) + λ−2/3ĥ1(ζ̂ ) + . . . , (7.23)

where ĥ0 satisfies (7.21) subject to (7.22). Based on (7.18) and (7.19), it can be
established that

ĥ1 ∼ − 1
12

a2ζ̂
4 − 1

6
a1ζ̂

3 + a12ζ̂
2 + . . . as ζ̂ → −∞, (7.24)
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and ĥ1(ζ̂ ) satisfies (7.8). If ζ̂m(λ) denotes the exact location of the minimum and ζ̂0

corresponds to the minimum of ĥ0, then ζ̂m − ζ̂0 = O(λ−2/3) and

hcrit = ĥ(ζ̂m; λ) = ĥ0(ζ̂0) + λ−2/3ĥ1(ζ̂0) + . . . , (7.25)

since ĥ′
0(ζ̂0) = 0. Numerical solutions of (7.21) and (7.8), employing the matching

conditions (7.22) and (7.24), yield

hcrit ≈ 3.900 − 2.53λ−2/3 + . . . . (7.26)

A comparison with numerical solutions of the full equation (3.5) is shown in figure 5.
As can be seen, excellent agreement is obtained for all values of λ > 10.

As observed at the start of this section, the Landau–Levich theory (§ 4) corresponds
to the unique stationary solution when λ� 1 only if hi < hcrit.

8. Cylindrical applicators: an illustrative example
In principle, the relationship between the volume flux Q and the applied pressure

gradient can be determined for a known applicator geometry. Middleman (1998)
presents specific results for a long cylindrical applicator of length L′ and constant
radius R′

0. For fully developed flow in the applicator, it can be established that

hi

(
1 − K2h

2
i

)
= 2, (8.1)
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Figure 6. Applicator gap for a given pressure gradient.

where

K2 = 1
6
δ2

(p′
e − p′

s)R
′2
f

µL′W ′ = − ps

6Ca3L
. (8.2)

Here, the dimensionless pressure

ps =
p′

s − p′
e

σ/R′
f

, (8.3)

where p′
e and p′

s are the applicator exit and supply pressures, respectively. Also, the
dimensionless applicator length

L = δL′/R′
f . (8.4)

Note that K2, and hence (8.1), is independent of the surface tension and corresponds
to the ratio between the force due to the applied pressure and the drag exerted on
the applicator by the fibre motion. Similarly, it can be shown that the velocity profile
within the applicator (narrow gap) can be written

w = 1 − s

hi

− 3K2s(hi − s), (8.5)

where the radial coordinate s is defined by (2.1) with 0 � s � hi .
As noted in § 4, when K2 is small, hi ≈ 2. In general, solutions of (8.1) exist only if

(see figure 6)

K2 < 1
27

. (8.6)

In the range 0 <K2 < 1/27, there are two positive solutions of (8.1). For the lower
branch, h < hm (= 3), all solutions satisfy

3K2h
2
i < 1. (8.7)

If K2 > 0, then on the lower branch 2 <hi < 3 and the condition (8.7) implies from
(8.5) that flow reversal in the applicator will not occur. Note, however, that non-unique
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solutions can still arise (see figure 4). On the upper branch, h > hm, all solutions are
such that 3K2h

2
i > 1 and flow reversal in the applicator will always occur; again

non-unique solutions can arise for certain λ. When K2 < 0, i.e. a strongly pressurized
applicator, (8.1) has a single real positive solution, hi < 2 (see figure 6). In this case,
reversed flow does not arise and all solutions are unique. Flows with strong adverse
pressure gradients, in which K2 > 0, are not expected to arise in practical fibre-coating
applications, but the results are included here to provide a full description of the
possible range of behaviours.

In the free-surface region, using (3.2) and (3.5), the velocity distribution (3.1) can
be expressed as

w = 1 − 3(h − 1)

2h

s

h

(
2 − s

h

)
, (8.8)

where 0 � s � h. Consequently, reversed flow will also take place in the coating if
h > 3 (= hm). When hi < 3, it may appear that there will be no flow reversal, but the
oscillatory results described in § 6 indicate that local solutions with h > 3 can still
arise. Even if hi < 3, non-unique solutions are possible (see figure 4) provided that
hi > 2.43 . . . .

9. Stability issues
Flows of the type considered here are known to be susceptible to Rayleigh

instabilities and, in particular, Kalliadasis & Chang have examined such nonlinear
instabilities for thin fibre coatings. Similarly, Oron et al. have analysed a broad
range of time-dependent problems that arise in the physics of thin films. For the
configuration discussed in this paper, it can be shown that the unsteady form of (3.5)
is

∂h

∂t
+

∂h

∂z
+ λ−1 ∂

∂z

(
h3

(
∂h

∂z
+

∂3h

∂z3

))
= 0, (9.1)

where the time t is made dimensionless using R′
f /W ′. With respect to the asymptotic

state h = 1 (z → ∞), standard linear stability arguments using (9.1) indicate that the
flows are unstable, and that the time scale for the maximum growth rate is given by
(Hammond 1983)

t ′
g = 4λ

R′
f

W ′ . (9.2)

This scale should be compared with a characteristic transit time for a particle leaving
the applicator to approach the final state h = 1. Based on the asymptotic decay law
discussed in Appendix A, one measure for this transit time is

t ′
tr = ztr

R′
f

W ′ = m−1
R′

f

W ′ , (9.3)

so that

t ′
g

t ′
tr

= 4λm. (9.4)

As observed in § 1, the liquid coating is solidified by employing a curing process.
In practice, the curing station must be located at a distance downstream of the die
exit defined by the transit time t ′

tr, i.e. by the length scale z′
tr (= m−1R′

f /W ′). For λ� 1
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(see A 2)

t ′
g

t ′
tr

∼ 4λ2/3 � 1 (9.5)

and disturbances will not have sufficient time to develop prior to curing. Alternatively,
for λ� 1,

t ′
g

t ′
tr

∼ 4λ2 � 1 (9.6)

and instabilities can arise before curing. Even for λ> 2, however, the time-scale ratio
is greater than eight, and curing should occur before surface instabilities dominate.

10. Summary
In the lubrication limit, classical coating theory at small capillary numbers leads to

the Landau–Levich equation, (4.2), in which axial curvature dominates; that analysis
is valid when the dimensionless thickness δ = O(Ca2/3). For larger die gaps, i.e. larger
coating thicknesses, the classical approach fails. This paper provides an analysis for
the limit when δ = O(Ca1/3). As noted earlier, some experimental results for dip-
coating (Darhuber et al. 2000) are in accord with the latter scaling in which the
Landau–Levich equation for the free-surface profile is replaced by (3.5) for which
both axial and circumferential curvatures are important. Coating flows corresponding
to the oscillatory behaviours described here were not discussed in Darhuber et al.

Solutions of (3.5) are dependent on the dimensionless group λ= 3Caδ−3 and the
dimensionless die gap hi . Numerical calculations indicate that this equation has a
unique solution for all λ provided that hi < 2.43. . . . At larger values of hi , the
numerical results demonstrate the possible existence of free-surface spatial oscillations,
and the time-independent solution is not necessarily unique. A band of non-unique
solutions first arises in the interval

hmin1 < hi < hmax1, (10.1)

and the critical gap hcrit ≡ hmin 1. Computations of the critical gap size hcrit(λ) illustrate
that discontinuities in this function occur at discrete values of λ. Knowledge of hcrit

provides an important constraint on die geometry. Exceeding hcrit can generate spatial
surface oscillations that may prevent the production of a uniform coating thickness.
It was recognized in § 6, however, that for h > hcrit unique solutions can still exist in
restricted regions of the parameter space.

Appendix A. Asymptotic decay
As h → 1, it follows from (3.5) that

h − 1 ∼ ke−mz, (A 1)

and the eigenvalue m satisfies

m3 + m = λ, (A 2)

where λ is defined by (3.7) and (2.11).
Since λ> 0, (A 2) has a single real positive solution together with a complex

conjugate pair. The sum of the roots of (A 2) is zero so that the real part of the
conjugate pair is negative. Only the real positive eigenvalue is acceptable, and the
requirement (2.3) imposes two constraints on the solution of (3.5).
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Appendix B. Computational procedure
As noted earlier, the imposition of (2.3) eliminates two growing solutions of (3.5).

Consequently, the limiting behaviour as z → ∞ has the form

h − 1 ∼ b1e
−mz + . . . , (B 1)

where m is the real positive root of (A 2).
Since (3.5) is invariant under translation with respect to z, it is convenient to rewrite

(B 1) as

h − 1 ∼ b̄1e
mz̄ + . . . , (B 2)

where

z̄ = z0 − z, b̄1 = b1exp(−mz0). (B 3)

It is now permissible to identify b̄1 by choosing

h − 1 ≡ h̄ = h̄b � 1 at z̄ = 0. (B 4)

Imposing the requirement that h̄ → 0 as z̄→−∞, leads to the asymptotic representation

dh̄

dz̄
∼ mh̄ + m2h̄

2 + . . . ,
d2h̄

dz̄2
∼ m2h̄ + 3mm2h̄

2 + . . . , (B 5)

with

m2 = −3λ/(7m2 + 1), etc. (B 6)

These results for the first and second derivatives can be used to initiate the numerical
calculation starting at z̄ =0 with h̄ = h̄b. Backward integration enables the parameter
z0 to be identified by the value of z̄ at which h = hi , where z = 0. The profile for
h =h(z; hi) then follows.

Appendix C. Behaviour for large hi

Using the translation z̄ = z0 − z, inspection of (3.5) suggests that the dominant
approximation as z̄ → ∞ (hi � 1) has the form

h ∼ z̄−1/3f (z̄), (C 1)

where f (z̄) satisfies

f ′′′ + f ′ ≈ 0,

so that

f (z̄) ∼ a0 + b0 cos z̄ + c0 sin z̄. (C 2)

Note that, although hi � 1, it is necessary that δhi � 1 for the thin-film assumption to
be valid. Inspection of higher-order terms indicates that, in general, secular behaviours
can occur over length scales O(h3

i ) and justification of (C 1) and (C 2) requires a more
careful analysis that is given below.

The secular behaviour indicates that it is necessary to carry out a multiple scales
analysis by introducing

Y = εz̄, ȳ = (1 + o(ε))z̄, (C 3)

where

ε = h−3
i . (C 4)

It is now appropriate to set

h = hiF (ȳ, Y ; ε), (C 5)
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where no assumption concerning the functional form of F (ȳ, Y ; ε) is made. Using
(C 3)–(C 5), (3.5) becomes

F 3

[
∂3F

∂ȳ3
+

∂F

∂ȳ
+ ε

(
3

∂3F

∂ȳ2∂Y
+

∂F

∂Y

)
+ O(ε2)

]
= ελF + O

(
ε4/3

)
. (C 6)

Consistent with (C 6), F (ȳ, Y ; ε) can be expanded in the form

F = F0(ȳ, Y ) + εF1(ȳ, Y ) + . . . , (C 7)

which leads to
∂3F0

∂ȳ3
+

∂F0

∂ȳ
= 0,

or

F0 = A0(Y ) + B0(Y ) cos ȳ + C0(Y ) sin ȳ. (C 8)

Similarly, F1 satisfies

∂3F1

∂ȳ3
+

∂F1

∂ȳ
=

λ

F 2
0

− dA0

dY
+ 2

dB0

dY
cos ȳ + 2

dC0

dY
sin ȳ = R1(ȳ, Y ). (C 9)

Possible secular growth is eliminated by using the orthogonality requirements∫ 2π

0

R1(ȳ, Y ){1, cos ȳ, sin ȳ}T dȳ = 0. (C 10)

From (C9) and (C 10), using Gradshteyn & Ryzhik (1994), it can be established that

dMi

dY
=

λMi(
A2

0 − B2
0 − C2

0

)3/2
, (C 11)

where Mi = A0, B0 or C0. Consequently, the asymptotic behaviour is described by

A0 = a0Y
1/3, B0 = b0Y

1/3, C0 = c0Y
1/3, (C 12)

with

a2
0 − b2

0 − c2
0 = (3λ)2/3. (C 13)

Note that (C 8) and (C 12) still imply that the asymptotic behaviour has the form
(C 2), but now the coefficients are related through (C 13).

Writing

a0 = a, b0 = b cosφ, c0 = b sin φ, (C 14)

gives the limiting result (6.1), i.e.

h ∼ z̄−1/3(a + b cos(z̄ − φ)), (C 15)

where

a2 − b2 = (3λ)2/3. (C 16)
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